THE ROLE OF NUTRITION IN GLAUCOMA CARE

Can supplements enhance disease management?

BY TOM CHWE, OD, DIPL ABO

laucoma is a significant global health issue and the leading cause of irreversible blindness worldwide.¹ Although current treatments focus on reducing IOP, deterioration of retinal ganglion cells (RGCs) and loss of visual function can still occur despite effective IOP management.²

Research has revealed other mechanisms contributing to the progression of glaucoma, such as oxidative stress, vascular dysregulation, and neuroinflammation.³⁻⁵ This highlights the need for approaches beyond IOP reduction, focusing instead on neuroprotective approaches to directly preserve RGCs and optic nerves, targeting the underlying causes of cell and nerve damage.⁶

Many patients, driven by the fear of losing their sight, are seeking ways to complement traditional glaucoma treatments. Nutritional support may provide additional benefits, and it should be noted that eating a variety of healthy whole foods and following the MIND⁷ diet may be sufficient for many individuals with or at risk of

having glaucoma.⁸ Effective nutritional counseling starts with building a solid foundation of healthy eating habits.

FOOD AND GLAUCOMA

The Mediterranean-DASH Intervention for Neurodegenerative Delay (MIND) diet was designed to promote brain health and reduce the risk of cognitive decline (see 9 Foods to Eat and 5 Foods to Limit on the MIND Diet).7,8 It combines elements of the Mediterranean diet and the Dietary Approaches to Stop Hypertension (DASH) diet, focusing on foods believed to support cognitive function.9 The Rotterdam Study reveals that greater adherence to the MIND diet is associated with a lower risk of developing open-angle glaucoma.8 This association is independent of IOP, highlighting the MIND diet's powerful antiinflammatory and neuroprotective benefits. Key components, such as green leafy vegetables and berries are particularly beneficial due to their high concentrations of antioxidants and flavonoids, which have been shown to protect retinal ganglion cells.10

While there is promising evidence regarding the role of diet in glaucoma development and management, more rigorous clinical studies are needed to establish definitive guidelines. Future research should focus on long-term dietary interventions and their direct impact on glaucoma progression.

NUTRACEUTICALS AND GLAUCOMA

Nutraceuticals have been gaining attention for their antioxidant, antiinflammatory, and neuroprotective benefits. 11 Counseling about dietary supplements with patients should include a recommendation to also consult with their primary care physician to ensure safety should they have any potential interactions or contraindications.

Preclinical studies on nutritional supplements and glaucoma have shown promising results in both in vitro and animal models. ^{12,13} Although some human studies have been conducted, better quality randomized clinical trials are needed to confirm the efficacy of nutritional supplements and determine their role in glaucoma care. Eye care

providers should follow evidence-based guidelines for managing glaucoma, and patients should view supplements as supportive therapy, rather than as a replacement for traditional care.

Below are some of the leading supplements that may provide neuroprotective benefits for patients with glaucoma, or those at risk of developing the disease. Note: This is not an exhaustive list of promising supplements, as many are currently being studied. Based on a review of the literature, the list below highlights supplements that I believe will continue to receive increasing attention.

Vitamin B

Vitamin B₃ occurs naturally in two forms: niacin (nicotinic acid) and niacinamide (nicotinamide). Niacin is typically used to manage cholesterol levels and reduce cardiovascular risk, whereas nicotinamide is essential for producing nicotinamide adenosine dinucleotide to issues such as mitochondrial dysfunction and oxidative stress, which can contribute to glaucoma.¹⁴ Nicotinamide also helps restore NAD, protecting RGCs by improving mitochondrial health and reducing cell stress. Niacin triggers the release of prostaglandins, often leading to a niacin flush, characterized by redness, warmth, and itchiness. Nicotinamide does not cause flushing, as it does not affect prostaglandin release. Supplementing with niacin can cause certain dangerous side effects, such as liver damage, hypotension, and peptic ulcers, while niacinamide is usually safer, with fewer potential side effects.

Studies in animals and humans show that nicotinamide can improve retinal function and protect against glaucomarelated damage. Clinical trials have demonstrated enhanced visual function, measured using electroretinogram and visual field, in patients taking nicotinamide alone or with other compounds, such as pyruvate. 15-17 Nicotinamide is widely available in 500-mg capsules, and human studies

9 FOODS TO EAT AND 5 TO LIMIT ON THE MIND DIET

- 1. Green leafy vegetables*
- 2. All other vegetables
- 3. Berries*
- 4. Nuts

EAT:

- 5. Olive Oil
- 6. Whole grains
- 7. Fish
- 8. Beans
- 9. Poultry

- LIMIT:
 - 1. Butter and margarine
 - 2. Cheese
 - 3. Red meat
 - 4. Fried and fast food
 - 5. Pastries and sweets

*The MIND diet categorizes green leafy vegetables and berries separately, both of which may offer neuroprotective effects. This separation could clarify the stronger association between the MIND diet and the incidence of open-angle glaucoma compared to other diets.

have used a dosage between 1.5 g and 3 g daily. Ongoing research is exploring its long-term benefits, with results expected by 2026.18

Citicoline

Citicoline (also known as CDP-choline or cytidine diphosphate-choline) is a naturally occurring compound that has gained attention for its potential neuroprotective effects in glaucoma.¹⁹ It serves as a building block for phospholipids, which are essential components of neuronal cell membranes, and supports the production of key neurotransmitters such as dopamine and acetylcholine. By stabilizing nerve cells and reducing oxidative stress, citicoline helps preserve optic nerve and RGC health.

In a study on animals, citicoline preserved RGC density and improved visual acuity without affecting IOP, suggesting a neuroprotective effect.²⁰ Early clinical trials showed that intramuscular and oral citicoline improved visual function—measured using electroretinogram, visual field, and visual evoked potentials—and slowed glaucoma progression. 21,22 Studies also found that citicoline eye drops can improve optic nerve function, although they may cause more side effects than oral forms due to corneal penetrating enhancers such as benzalkonium

chloride.²³ Combination therapies using citicoline with other compounds such as docosahexaenoic acid and vitamin E have also shown promise.^{24,25}

Ongoing clinical trials are exploring the therapeutic potential of citicoline in glaucoma, including a phase 3 trial evaluating its ability to slow visual field loss and structural damage in patients with glaucoma.²⁶ Citicoline is commonly available in 250 mg to 500 mg tablets or capsules, and most human trials in glaucoma and neuroprotection have used between 500 mg to 1000 mg daily.

Ginkgo Biloba

The herbal supplement Ginko biloba extract (GBE) has shown potential benefits for managing glaucoma, particularly due to its ability to improve blood flow, reduce oxidative stress, and provide neuroprotection.²⁷ GBE enhances microcirculation to the optic nerve and retina, which is especially beneficial in normal-tension glaucoma,^{28,29} where decreased vascular perfusion may contribute to the disease. Its antioxidant properties help neutralize free radicals, protecting RGCs and optic nerves from damage.

While short-term clinical studies have produced mixed results regarding improvements in visual field performance,30,31 a long-term 4-year study revealed that GBE significantly

slowed the progression of visual field defects.³² These findings highlight GBE's potential as an additional support to traditional IOP-lowering treatments, but further research is needed to confirm its efficacy.

Typical doses of a standardized extract (eg, EGb761) used in studies range from 120 mg to 240 mg daily, divided into two or three doses. Although GBE is generally safe and well-tolerated, patients should consult their primary care provider before taking it, as it could interact with blood-thinning medications.³³ Doctors may recommend it as a complementary therapy for patients with progressive glaucoma—especially those with normal-tension glaucoma but regular monitoring is essential.

Resveratrol

Resveratrol, a natural compound found in grapes, berries, and red wine, is gaining attention for its potential neuroprotective effects in glaucoma.34 It offers powerful antioxidant, antiinflammatory, and anti-apoptotic benefits, helping protect RGCs, optic nerve, and trabecular meshwork from damage caused by oxidative stress and inflammation.345 These effects may also support mitochondrial health and enhance cellular resilience, making it a promising complement to traditional glaucoma treatments.

Research in animal and in vitro models suggests resveratrol can reduce oxidative damage and decrease inflammation in the trabecular meshwork, leading to improved aqueous humor outflow. 12,36,37 In addition to its IOP-lowering effect, resveratrol has been shown to prevent RGC death and preserve optic nerve function in glaucoma.^{38,39} Although human studies are limited, early findings indicate its potential to complement standard IOP-lowering therapies. Resveratrol supplements are widely available, typically in doses of 50 mg to 500 mg daily. Although the low bioavailability may limit absorption, newer

formulations aim to address this issue.

Resveratrol is generally well-tolerated, with rare side effects such as mild gastrointestinal discomfort. However, it may interact with blood thinners or medications affecting blood glucose levels. 40,41 Patients should consult their health care provider before taking resveratrol to ensure it fits safely into their treatment plan. Doctors can recommend resveratrol as an adjunct therapy for glaucoma, encouraging patients to combine supplementation with a balanced diet rich in natural sources such as grapes and berries.

GUT MICROBIOTA

Emerging research suggests gut health, through its influence on inflammation, oxidative stress, and the gut-brain axis, may play a key role in the development and progression of glaucoma.⁴² Observational studies have seen a significant change in gut microbiota composition in patients with glaucoma.

For example, butyrate-producing bacteria are less abundant in individuals with glaucoma.43 These microorganisms ferment dietary fiber and indigestible carbohydrates to produce butyrate, a short-chain fatty acid crucial for maintaining gut health. They are associated with lower IOP and reduced glaucoma severity, suggesting a protective role. There is also a correlation between an increased Firmicutes/Bacteroidetes ratio and RGC loss.44 Specific strains are being studied for their neuroprotective effects. 45,46 It's important to note that research conducted on one probiotic strain cannot be accurately extrapolated to other strains within the same species.

An imbalanced gut microbiome could worsen optic nerve damage and neurodegeneration, while a healthy microbiome may offer protective benefits. As with other diseases, the gut-eye connection could open new avenues for glaucoma care, including dietary changes, probiotics, and microbiome-targeted therapies.

BUYER BEWARE

The supplement industry is not as strictly regulated as the food and drug industries, leading to variations in purity, potency, and safety. Thus, doctors should guide patients in choosing high-quality supplements. Look for supplements that are thirdparty tested by organizations such as United States Pharmacopeia, NSF International, or ConsumerLab, as these certifications verify quality and accuracy of labeling. Encouraging patients to choose reputable brands with a history of transparency and adherence to Good Manufacturing Practices is also crucial.

Additionally, doctors should remind patients to check for unnecessary additives or fillers and to avoid products that make exaggerated claims or lack a detailed ingredient list. It is also worth repeating that patients should consult with their primary care provider to ensure the supplement is appropriate for their health needs. This proactive approach will ensure patients receive safe, effective, and reliable nutritional support.

COMPREHENSIVE GLAUCOMA CARE

As glaucoma continues to challenge efforts to prevent blindness, counseling patients about following the MIND diet and integrating nutritional supplements with traditional treatments offers a promising approach. Supplements such as nicotinamide, citicoline, Ginkgo biloba, and resveratrol have shown potential in protecting RGCs and the optic nerve through their antioxidant and neuroprotective properties. Exploring gut health may reveal new therapeutic opportunities. Eye care providers can inspire hope by adopting an integrated approach that combines these strategies with standard IOPlowering therapies.

^{1.} Tham YC, Li X, Wong TY, Quigley HA, Aung T, Cheng CY. Global prevalence of glaucoma and projections of glaucoma burden through 2040. Ophthalmology. 2014;121(11):2081-2090.

^{2.} Susanna R, De Moraes CG, Cioffi GA, Ritch R. Why do people (still) go blind from glaucoma? Transl Vis Sc Technol. 2015;4(2)1.

^{3.} Fan Gaskin JC, Shah MH, Chan EC. Oxidative stress and the role of NADPH oxidase in glaucoma. Antioxidants (Basel). 2021;10(2):238.

Grieshaber MC, Mozaffarieh M, Flammer J. What is the link between vascular

- dysregulation and glaucoma? Surv Ophthalmol. 2007;52 Suppl:S144-S154. Vohra R, Tsai JC, Kolko M. The role of inflammation in the pathogenesis of glaucoma. Surv Ophthalmol. 2013:58(4):311-320.
- 6. Wang LH, Huang CH, Lin I-Chan. Advances in neuroprotection in glaucoma: pharmacological strategies and emerging technologies. Pharmaceuticals (Basel). 2024:17(10):1261-1261
- 7. Liu X, Morris MC, Dhana K, et al. Mediterranean-DASH intervention for neurodegenerative delay (MIND) study: rationale, design and baseline characteristics of a randomized control trial of the MIND diet on cognitive decline. Contemp Clin Trials. 2021:102:106270.
- 8. Vergroesen JE, de Crom TOE, van Duijn CM, Voortman T, Klaver CCW, Ramdas WD. MIND diet lowers risk of open-angle glaucoma: the Rotterdam Study. Eur J Nutr. 2023;62(1):477-487
- 9. Koch M, Jensen MK. Association of the MIND diet with cognition and risk of Alzheimer's disease. Curr Opin Lipidol. 2016;27(3):303-304.
- 10. Morris MC. Nutrition and risk of dementia: overview and methodological issues. Ann NY Acad Sci. 2016;1367(1):31-37.
- 11. Medori MC, Naureen Z, Dhuli K, Placidi G, Falsini B, Bertelli M. Dietary supplements in retinal diseases, glaucoma, and other ocular conditions. J Prev Med Hyg. 2022;63(2 Suppl):F189-F199.
- 12. Cao K, Ishida T, Fang Y, et al. Protection of the retinal ganglion cells: intravitreal injection of resveratrol in mouse model of ocular hypertension. Invest Ophthalmol Vis
- 13. Avotri S, Eatman D, Russell-Randall K. Effects of resveratrol on inflammatory biomarkers in glaucomatous human trabecular meshwork cells. Nutrients. 2019;11(5):984. 14. Cimaglia G, Votruba M, Morgan JE, André H, Williams PA. Potential therapeutic benefit of NAD+ supplementation for glaucoma and age-related macular degeneration. Nutrients. 2020;12(9):2871.
- 15. Williams PA, Harder JM, Foxworth NE, et al. Vitamin B3 modulates mitochondrial vulnerability and prevents glaucoma in aged mice. Science. 2017;355(6326):756-760. Hui F, Tang J, Williams PA, et al. Improvement in inner retinal function in glaucoma with nicotinamide (vitamin B3) supplementation: a crossover randomized clinical trial. Clin Exp Ophthal. 2020;48(7):903-914.
- 17. De Moraes CG, John SWM, Williams PA, Blumberg DM, Cioffi GA, Liebmann JM. Nicotinamide and pyruvate for neuroenhancement in open-angle glaucoma: a phase 2 randomized clinical trial. JAMA Ophthalmol. 2022;140(1):11-18.
- 18. Bhartiya S. Niacinamide and neuroprotection: the glaucoma holy grail. J Curr Glaucoma Pract. 2023;16(3):141-143.
- 19. Faig MA, Wollstein G, Schuman JS, Chan KC. Cholinergic nervous system and glaucoma: from basic science to clinical applications. Prog Ret Eye Res. 2019;72:100767 20. Van der Merwe Y, Yang X, Ho LC, et al. Citicoline preserves optic nerve integrity and

- visuomotor function following chronic intraocular pressure elevation. Paper presented at: Association for Research in Vision and Ophthalmology Annual Meeting; May 1-5, 2016: Seattle, WA
- 21. Virno M, Pecori-Giraldi J, Liguori A, Gregorio F. The protective effect of citicoline on the progression of the perimetric defects in glaucomatous patients (perimetric study $\,$ with a 10-year follow-up). Acta Ophthalmol Scand Suppl. 2000;S232:56-57.
- 22. Parisi V. Electrophysiological assessment of glaucomatous visual dysfunction during treatment with cytidine-5'-diphosphocholine (citicoline): a study of 8 years of follow up. Doc Ophthalmol. 2005;110(1):91-102.
- 23. Grieb P, Jünemann A, Rekas M, Rejdak R. Citicoline: a food beneficial for patients suffering from or threated with glaucoma. Front Aging Neurosci. 2016;8:73.
- 24. Anton A, Garcia V, Muñoz M, et al. The effect of oral citicoline and docosahexaenoic acid on the visual field of patients with glaucoma: a randomized trial. Life (Basel). 2022;12(10):1481.
- 25. Marino P, Rossi G, Campagna G, Capobianco D, Costagliola C. Effects of citicoline, homotaurine, and vitamin E on contrast sensitivity and visual-related quality of life in patients with primary open-angle glaucoma: a preliminary study. Molecules.
- 26. Kuo CY, Liu CJL. Neuroprotection in glaucoma: basic aspects and clinical relevance. J Pers Med. 2022;12(11):1884.
- 27. Ritch R. Potential role for Ginkgo biloba extract in the treatment of glaucoma. Med Hypotheses. 2000;54(2):221-235
- 28. Park JW, Kwon HJ, Chung WS, Kim CY, Seong GJ. Short-term effects of Ginkgo biloba extract on peripapillary retinal blood flow in normal tension glaucoma. Korean J Ophthalmol. 2011;25(5):323-328.
- 29. Harris A, Gross J, Moore N, et al. The effects of antioxidants on ocular blood flow in patients with glaucoma. Acta Ophthalmol. 2017;96(2):e237-e241.
- 30. Quaranta L, Bettelli S, Uva MG, Semeraro F, Turano R, Gandolfo E. Effect of Ginkgo biloba extract on preexisting visual field damage in normal tension glaucoma. Ophthalmology. 2003;110(2):359-362.
- 31. Guo X, Kong X, Huang R, et al. Effect of Ginkgo biloba on visual field and contrast sensitivity in Chinese patients with normal tension glaucoma: a randomized, crossover clinical trial. Invest Ophthalmol Vis Sci. 2014;55(1):110.
- 322. Lee J, Sohn SW, Kee C. Effect of Ginkgo biloba extract on visual field progression in normal tension glaucoma. J Glaucoma. 2013;22(9):780-784.
- 33. Taki Y. Yokotani K. Yamada S. et al. Ginkgo biloba extract attenuates warfarinmediated anticoagulation through induction of hepatic cytochrome P450 enzymes by bilobalide in mice. Phytomedicine. 2012;19(2):177-182.
- 34. Delmas D. Cornebise C. Courtaut F. Xiao J. Aires V. New highlights of resveratrol: a review of properties against ocular diseases. Int J Mol Sci. 2021;22(3):1295. 35. Abu-Amero K, Kondkar A, Chalam K. Resveratrol and ophthalmic diseases. Nutrients, 2016;8(4):200.

- 36. Luna C, Li G, Liton PB, et al. Resveratrol prevents the expression of glaucoma markers induced by chronic oxidative stress in trabecular meshwork cells. Food Chem Toxicol. 2009:47(1):198-204.
- 37. Avotri S, Eatman D, Russell-Randall K. Effects of resveratrol on inflammatory biomarkers in glaucomatous human trabecular meshwork cells. Nutrients. 2019:11(5):984.
- 38. Luo HD, Zhuang J, Hu P, et al. Resveratrol delays retinal ganglion cell loss and attenuates gliosis-related inflammation from ischemia-reperfusion injury. Invest Ophthalmol Vis Sci. 2018;59(10):3879-3879.
- 39. Means JC, Lopez AA, Koulen P. Resveratrol protects optic nerve head astrocytes from oxidative stress-induced cell death by preventing caspase-3 activation, tau dephosphorylation at ser422 and formation of misfolded protein aggregates. Cell Mol Neurobiol. 2020;40(6):911-926.
- 40. Chiba T, Kimura Y, Suzuki S, Tatefuji T, Umegaki K. Trans-resveratrol enhances the anticoagulant activity of warfarin in a mouse model. J Atherosder Thromb. 2016;23(9):1099-1110.
- 41. Matta S, Kilari EK. Interaction of resveratrol on the pharmacodynamics and pharmacokinetics of gliclazide in animal models. Indian J Pharm Sci. 2024;86(3):1110-1116. 42. Ullah Z, Tao Y, Mehmood A, Huang J. The role of gut microbiota in the pathogenesis of glaucoma: evidence from bibliometric analysis and comprehensive review. Bioengineering (Basel). 2024;11(11):1063.
- 43. Vergroesen JE, Jarrar ZA, Weiss S, et al. Glaucoma patients have a lower abundance of butyrate-producing taxa in the gut. Invest Ophthalmol Vis Sci. 2024;65(2):7. 44. Zhang Y, Zhou X, Lu Y. Gut microbiota and derived metabolomic profiling in glaucoma with progressive neurodegeneration. Front Cell Infect Microbiol. 2022;12:968992. 45. Zhao X, Xu M, Zhao Z, et al. Bifidobacterium promotes retinal ganglion cell survival by regulating the balance of retinal glial cells. CNS Neurosci Ther. 2023;29(S1):146-160. 46. Morita Y, Kenta Jounai, Sakamoto A, et al. Long-term intake of Lactobacillus paracasei KW3110 prevents age-related chronic inflammation and retinal cell loss in physiologically aged mice. Aging (Albany NY). 2018;10(10):2723-2740.

TOM CHWE, OD, DIPL ABO

- Optometrist, Central Florida
- Co-founder and Chief Medical Officer, Curo Research
- tom@curoresearch.com
- Financial disclosure: None